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Decentralized Learning (DL)
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DL main caracteristics
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Differential Privacy in a nutshell
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Differential Privacy in a nutshell
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Who is the attacker?

Observations of A (O 4)7?
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DP & DL: a game of observations

LDP PNDP [3]

o (O 4: all messages sent on the network e (O 4: messages received by node A
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Noisy approaches — DP-D-SGD

Limitations
e Impacts utility

e Difficult to scale 6/20



Correlated-noise approaches

Correlation axis
e Space (Decor [1], ZIP-DL (ours, [2])) = Complex analysis

e [ime? = No composition theorem. 7/20



Background: Matrix factorization in
Centralized settings




Matrix Factorization in Centralized settings [6]

e Stack gradients and models into vectors:

10 --- 0 81 01
11 --- 0 0
AZ]-IZ/: . . . . ’ G = g._Q ) 0 = .2
11 1 gt 0:

o A: matrix.
e We can rewrite SGD as a :
0=1: ® 0y — nAG.

SGD: M(G) = AG
DP-SGD: M(G) = A(G + Z2), Z ~ N(0,°I)

Matrix mechanism: M(G) = AG + BZ, Z ~ N(0,v°1;) 8/20



Matrix Factorization in Centralized settings [6]

Goal: find good factorizations A = BC.
Theorem — DP guarantees for Centralized learning [4]

e Hypothesis:
° setting

e A= BC and A is squared & lower triangular & invertible.
e Then, M(G) = B(CG + Z) with Z ~ N (0,12) with v = osens(C) is 2-GDP,

even under G.
Dense (opt. for cyclic b=16,k=4) C Dense (opt. for cyclic b=16, k=4) C!
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Matrix Factorization in Centralized settings [6]

Goal: find good factorizations A = BC.
Theorem — DP guarantees for Centralized learning [4]

o Hunathacic:

Adapt the matrix-factorization formalism to decentralized settings.

° . : : -GDP
Extend the centralized theorem by relaxing structural assumptions. '

Derive tighter privacy accounting for decentralized mechanisms.

Introduce MAFALDA-SGD for optimized correlated noise.

15 15
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Our work: Unifying it all in DL




Adapting MF to DL

We stack through both time and space: T block of n values, one for each node.

Communication workload

In 0 0 ... 0 G

w i 0 ... 0 G

W= | W2 w I .. 0|, G=|Gs
_WT_l WT—2 WT—3 . In | _GT_

e W: communication matrix
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Matrix Factorization in DL — high level view

ter7{ \Bp WT-1 WT-1 .. W I, e
H—/

Attacker observations:

O4=AG + BZ

e Aisa matrix.

e A has a column-echelon structure.

11/20



Adaptive privacy guarantees

Hypothesis:
settings

A=BCand Ais & .
Then, M(G) = B(CG + Z) with Z ~ N (0,12) with v = osens(C; B) is 2-GDP,

even under G.

sensn(C; B) < maxzen D g ter (CTBTBC)s .

Novelties
e Wider range of workloads

e Extends the notion of sensitivity
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Remark — Recovering known threat models

LDP + DP-D-SGD
e Attacker observes all noisy gradients.

e |ID noises accross all nodes and rounds.

OA:B:WT,C:I,-,T

Attacker A observes a subset of noisy gradients

P4W G projection on the gradients observed by A 13/20



Application 1 — Tighter accounting
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Shortest Path Length from Attacker

e Recover existing privacy accounting such as PNDP [3].
e We derive tighter PNDP bounds for DP-D-SGD.
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Application 2: Correlation
optimization (Mafalda-SGD)




trix FActorization for Local Differential PrivAte-SGD (MAFALDA-SGD)

e Adapt optimization objective to LDP setting.
e Force same noise pattern for all nodes.

e The new minimization problem is

ﬁopti (WT7 Clocal ) - I§|ens (Clocal )2 HLCRL

2
ocal ‘

F

local

with L the Choleski decomposition such that

LTL = Z Al A;,
i=1

A= (It @ W)WK(T:")
[(T® i [iT:(i+1) T—1]

e Solve ming,_, Lopti (W7, Ciocal ) using L-BFGS [6].
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Experimental results — FEMNIST
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Conclusion

Our work
° under various noise patterns/attackers
e Derives tighter privacy guarantees for MF mechanisms

e Introduces a novel algorithm that outperforms LDP baselines

Future works
e Explore localized optimums and other threat models

e Find cross-nodes optimal correlations
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Experimental results — Housing
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