
Unified Privacy Guarantees for Decentralized Learning via

Matrix Factorization

Dimitri Lerévérend3
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Decentralized Learning (DL)

DL main caracteristics

• Possibly heterogeneous data

• Local model training

• Synchronous model exchanges

• Communication graph W

• No central server

=⇒ How can we guarantee privacy in this setting?
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Differential Privacy in a nutshell

D

+

M1

M2

M(D′)

M(D)

A

?

?

OA 3/20



Differential Privacy in a nutshell

D

+

M1

M2

M(D′)

M(D)

A

?

?

OA 3/20



Who is the attacker?

Observations of A (OA)?
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DP & DL: a game of observations

LDP

• OA: all messages sent on the network

PNDP [3]

Au

• OA: messages received by node A
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Noisy approaches — DP-D-SGD

Limitations

• Impacts utility

• Difficult to scale
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Correlated-noise approaches

Correlation axis

• Space (Decor [1], ZIP-DL (ours, [2])) =⇒ Complex analysis

• Time? =⇒ No composition theorem.
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Background: Matrix factorization in

Centralized settings



Matrix Factorization in Centralized settings [6]

• Stack gradients and models into vectors:

A = 1i≥j =


1 0 · · · 0

1 1 · · · 0
...

...
. . .

...

1 1 · · · 1

 , G =


g1

g2
...

gt

 , θ =


θ1

θ2
...

θt


• A: workload matrix.

• We can rewrite SGD as a linear system:

θ = 1t ⊗ θ0 − ηAG .

Equivalent mechanism

SGD: M(G ) = AG

DP-SGD: M(G ) = A(G + Z ), Z ∼ N (0, ν2It)

Matrix mechanism: M(G ) = AG + BZ , Z ∼ N (0, ν2It) 8/20



Matrix Factorization in Centralized settings [6]

Goal: find good factorizations A = BC .

Theorem — DP guarantees for Centralized learning [4]

• Hypothesis:
• Centralized/Federated setting

• A = BC and A is squared & lower triangular & invertible.

• Then, M(G ) = B(CG + Z ) with Z ∼ N
(
0, ν2

)
with ν = σ sens(C ) is 1

σ -GDP,

even under adaptive G .

9/20
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Our objectives

1. Adapt the matrix-factorization formalism to decentralized settings.

2. Extend the centralized theorem by relaxing structural assumptions.

3. Derive tighter privacy accounting for decentralized mechanisms.

4. Introduce MAFALDA-SGD for optimized correlated noise.



Our work: Unifying it all in DL



Adapting MF to DL

We stack through both time and space: T block of n values, one for each node.

Communication workload

WT =


In 0 0 . . . 0

W In 0 . . . 0

W 2 W In . . . 0

· · · · · · · · · . . . · · ·
W T−1 W T−2 W T−3 · · · In

 , G =


G1

G2

G3
...

GT



• W : communication matrix
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Matrix Factorization in DL — high level view
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Initial
local
models
∈ ℝ𝑛×𝑑

Optimized under constraints

Drawn from 𝒩(0, 𝜎2sens(𝑐)2𝐼𝑛𝑇 )

Gossip matrix ∈ ℝ𝑛×𝑛

Local averaging
with neighbors

Stacked models

Workload 𝑾𝑻

Data Independant

𝑀

Messages

𝒪𝒜

Iter 1
Iter 2

Iter 𝑇

Attacker observations:

OA = AG + BZ

• A is a rectangular matrix.

• A has a column-echelon structure.
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Adaptive privacy guarantees

Theorem — Unified DP guarantees for DL

• Hypothesis:
• Decentralized learning settings

• A = BC and A is rectangular & column echelon.

• Then, M(G ) = B(CG + Z ) with Z ∼ N
(
0, ν2

)
with ν = σ sens(C ;B) is 1

σ -GDP,

even under adaptive G .

• sensΠ(C ;B) ≤ maxπ∈Π
∑

s,t∈π

∣∣∣(C⊤B†BC
)
s,t

∣∣∣
Novelties

• Wider range of workloads

• Extends the notion of sensitivity
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Remark — Recovering known threat models

LDP + DP-D-SGD

• Attacker observes all noisy gradients.

• IID noises accross all nodes and rounds.

• A = B = WT , C = InT

PNDP [3]

v
u

• Attacker A observes a subset of noisy gradients

• PAWTG projection on the gradients observed by A 13/20



Application 1 — Tighter accounting
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Ours

• Recover existing privacy accounting such as PNDP [3].

• We derive tighter PNDP bounds for DP-D-SGD.

14/20



Application 2: Correlation

optimization (Mafalda-SGD)



MAtrix FActorization for Local Differential PrivAte-SGD (MAFALDA-SGD)

• Adapt optimization objective to LDP setting.

• Force same noise pattern for all nodes.

• The new minimization problem is

Lopti (WT ,Clocal ) = sens
Πlocal

(Clocal )
2
∥∥∥LC †

local

∥∥∥2
F

with L the Choleski decomposition such that

L⊤L =
n∑

i=1

A⊤
i Ai ,

Ai :=
[
(IT ⊗W )WTK

(T ,n)
]
[:,iT :(i+1)T−1]

• Solve minClocal
Lopti (WT ,Clocal ) using L-BFGS [6].
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Experimental results — FEMNIST
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Conclusion

Our work

• Unifies DP guarantees under various noise patterns/attackers

• Derives tighter privacy guarantees for MF mechanisms

• Introduces a novel algorithm that outperforms LDP baselines

Future works

• Explore localized optimums and other threat models

• Find cross-nodes optimal correlations
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Experimental results — Housing
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